Банковский голосовой бот — сложный технологический продукт. Если упростить, он состоит из четырех компонентов. Первые два — синтез речи (его «голос») и распознавание (его «слух»). Третий компонент — NLP-классификатор, и именно благодаря ему помощник понимает клиентов. Если клиент говорит «хочу узнать баланс», машина благодаря функции распознавания речи получает набор букв. Она не понимает, что это значит, а классификатор как раз помогает понять. Четвертый компонент — это банковские интеграции. Для того, чтобы клиент все-таки смог узнать баланс по своей карте, бот должен не только понять его просьбу, но и знать, откуда и как брать информацию.
Кнопочный IVR, который я взял на развитие как продакт, был устроен намного проще. Старый помощник умел делать только две вещи: сообщать баланс по карте и историю пяти последних операций. Это было неудобно, поэтому мы пошли в сторону персонализированных предиктивных сценариев — то есть сценариев, основанных на данных о поведении клиента. Как банк мы знаем о клиенте очень много — какие операции он совершал и что у него могло случиться. Например, мы знаем, что карту клиента зажевал банкомат, и когда он нам звонит — нам очевидно, зачем он набрал номер. И вместо того, чтобы заставлять его продираться через множество вопросов и нажимать кнопки, «железная леди» может начать разговор с сообщения о том, что в банке уже знают о проблеме. Поэтому такие сценарии и называются предиктивными — мы знаем, что произошло у клиента.
Кроме того, мы знаем его привычки. Мы проанализировали огромные массивы данных и выделили клиентов, которые, например, всегда звонят, чтобы узнать баланс. И стали спрашивать: «Вы хотите узнать баланс?». Это, хоть и не сразу, но сработало. Поначалу из 100% людей, которые звонят на номер 900, чтобы узнать баланс, только 20% делали это в IVR, а остальные шли к оператору. Сейчас у нас 80% — к оператору с этой задачей идет лишь пятая часть пользователей. К 2019 году мы были сфокусированы именно на этом: создавать такие сценарии, чтобы клиенты действительно могли решить свою проблему.
Еще одно направление, которое было важным с точки зрения клиентского опыта — синтез, то есть голос, который будут слышать клиенты. Синтез на Unit Selection был далек от совершенства — с ним приходилось очень много работать, чтобы компенсировать это несовершенство. Например, он не мог правильно произнести «Вам подходят эти условия?» и просто говорил клиенту: «Вам подходят эти условия». И все — без вопросительной интонации. И мы нашли лайфхак: если добавить частицу «ли», интонация у робота становилась вопросительной — он спрашивал «Подходят ли вам эти условия?». Да, это было компромиссное решение, но с несовершенным синтезом, который был у нас тогда, эти решения работали. Еще мы понимали, что сообщения, озвученные голосом, воспринимаются иначе, чем напечатанные текстом, и просто следовать общепринятым рекомендациям по написанию текстов было бы неверно.
Пиздец вы реально угораете? Вы сделали абсолютно неюзабельное мерзкое гуано, единственная функция которого быстро позвать оператора. Дебильнее чем этот бот-аутист, доводящий до инсульта, только законы государственной думы принятые по пьяни после корпоратива. Может вы изобретете способ читать отзывы о ваших продуктах?
но... но CSI ведь 4.57... и 80% запросов по балансу решаются ботом...
Согласен с Вашим мнением. Робот Сбера страшно тупой полезен банку только тем, что отшивает клиентов от общения с операторами.
Такое кстати было в Газпроме ещё несколько лет назад, как же мен он бесил
Комментарий недоступен
Биг дейт, блок чейн, эмейзинг... где карту открывали туда и идите!!
Коротко о инновациях Сбербанка.
Комментарий недоступен