Как отличить ИИ от обычного программного комплекса?
Многие программные комплексы могут быть крайне сложными, многоуровневыми, многофункциональными и многокомпонентными с возможностью интеграции автоматизированных систем управления (АСУ) с глубокой степенью автоматизации, но являются ли они ИИ?
На самом деле глубокая степени автоматизации АСУ при всей крайней сложности данных систем не делает их ИИ в широком понимании, хотя приближает их к ИИ.
Важно понимать критерии и признаки идентификации ИИ:
▪ Способность к обучению и адаптации - возможность самостоятельно учиться и адаптироваться на основе новых данных, опыта и обратной связи, оптимизировать свои алгоритмы в процессе работы, что позволяет ему с течением времени становиться более эффективным и точным. ИИ не ограничивается начальным обучением и может постоянно развиваться.
▪ Автономность принятий решений – способность выхода за границы установленных алгоритмов в рамках фокуса задачи и адаптация к новым сценариям без предварительного вмешательства человека. Проще говоря, ИИ способен самостоятельно искать наилучшее решения для решения конкретной задачи, тогда как обычные программы «заперты» в границы интегрированных алгоритмов.
Еще больше про внедрение искусственного интеллекта в финансовую и экономическую сферы в моем хобби-канале в телеграм Финансист | Практик
▪ Понимание контекста сложных задач – ИИ обладает способностью понимать сложные, многоуровневые задачи и контекст, в котором они возникают, тогда как в традиционных программам глубина понимания ограничена исключительно заранее написанными и внедренными скриптами и алгоритмами.
▪ Когнитивные функции – восприятие информации, рассуждение, обучение и многовекторное решение задач отличает ИИ от любых других систем, даже самых сложных. Логическое рассуждение предполагает способность к логическому анализу информации и формированию выводов с выстраиванием причинно-следственных цепочек.
▪ Обработка естественного языка – замещение машинного языка на инструкции и в дальнейшем на человеческий язык делает программный комплекс близким к ИИ в той мере, насколько ИИ способен понимать человеческую речь.
▪ Предиктивный анализ - ИИ может анализировать большие объемы исторических данных, обнаруживать закономерности и тенденции и использовать эти знания для прогнозирования будущих событий или результатов, опираясь на паттерны и вероятностные оценки.
▪ Мультимодальность – относится к способности ИИ анализировать и интегрировать информацию из различных источников или типов данных (модальностей). Например, мультимодальная система ИИ может одновременно обрабатывать текст, изображения, аудио и видео.
▪ Мультидисциплинарность - в контексте ИИ подразумевает применение знаний и методов из разных научных дисциплин для разработки, понимания и улучшения систем ИИ. Этот подход акцентирует внимание на объединении разнообразных научных и технических областей знаний для создания более эффективных и интеллектуальных систем.
Интеграция всех 8 базовых признаков ИИ не является обязательной, т.к. по существу, достаточно даже одного из выше перечисленных. Но в чем же разница, почему именно сейчас такое внимание и столь «ядерный» ажиотаж вокруг ИИ? Были внедрены одновременно восемь признаков.