По статистике 75% пользователей начинают взаимодействие на одном устройстве, а заканчивают на другом. И эта цепочка может состоять из множества (в среднем до 7-ми) взаимодействий одного и того же пользователя из разных каналов или источников (например, увидел рекламу в поиске, через два дня зашёл на сайт по рекламе в Facebook, а через неделю перешёл на сайт из закладок и совершил покупку).Поэтому рано или поздно перед любым бизнесом, продвигающим свои товары или услуги в интернете, встаёт вопрос: какой источник или канал принёс больше всего прибыли (поисковая реклама, обычный поиск, переходы из соцсетей, email, прямые заходы и др.).И разобраться в этом крайне важно для понимания:1) как посетители приходят к вам на сайт, что они делают после взаимодействия с рекламой, какой путь проходят до совершения конверсии;2) как эффективно перераспределить рекламный бюджет (на наиболее конверсионные источники увеличить расходы, на менее ценные – уменьшить)А помогут нам ответить на этот вопрос модели атрибуции. Им и посвящена эта статья. Поговорим о моделях атрибуции в Google Analytics, как они работают, об их достоинствах и недостатках. Ну и в каких случаях можно применять ту или иную модель атрибуции.Итак, модели атрибуции − это правила или наборы правил, по которым вклад в достижение конверсии распределяется между всеми источниками трафика в цепочке взаимодействий пользователя с сайтом. Другими словами, атрибуция помогает понять, как работает кампания: приносит конверсии или работает больше на знакомство с продуктом и охват.Где находится настройка моделей атрибуции в интерфейсе Google AnalyticsGoogle Analytics предлагает 7 стандартных моделей атрибуции. Найти настройку в интерфейсе можно так: Меню → АдминистраторДалее Столбец «Представление». В нём выбираем Настройки многоканальных последовательностейСледующий шаг – кнопка «Создать модель атрибуции» (на скриншоте ниже)И переходим к настройке модели атрибуции.Вводим название модели. Из выпадающего списка можно выбрать одну из базовых моделей.Или создать свою собственную, перейдя к детальным настройкам ниже.После того, как сделаете все настройки не забудьте нажать на кнопку «Сохранить»!Какую из моделей атрибуции выбрать, решайте сами. Всё зависит от ваших целей и специфики бизнеса. Разберём каждую из них.Поехали.1. Последнее взаимодействиеКак работает: присваивает всю ценность конверсии последнему источнику в цепочке взаимодействий. Подойдёт для бизнеса с быстрыми и недорогими покупками ( если используете 2‑3 рекламных канала).Недостаток: игнорирует вклад других источников трафика.2. По последнему непрямому клику (в Google Analytics используется по умолчанию)Как работает: игнорирует переходы с сохранённых страниц, прямые заходы, внутренние переходы на сайт, а ценность конверсии присваивается предыдущему значимому источнику (поиск, реклама, соцсети, ссылки на сайтах и др.)Подойдёт при коротком цикле продаж в случае, если нужно получать статистику только по конкретному значимому источнику трафика и у кампании нет цели работать на узнаваемость бренда.Недостатки: игнорирует вклад других каналов в конверсию.3. Последний клик в Google РекламеКак работает: присваивает всю ценность конверсии последнему переходу из Google Рекламы.Подойдёт для оценки эффективности и вклада в конверсии только переходов по объявлениям Google Рекламе.Недостатки: игнорирует вклад остальных источников в совершение конверсии.4. Первое взаимодействиеКак работает: присваивает всю ценность на пути к конверсии первому источнику в цепочке взаимодействий.Подойдёт для медийных кампаний, нацеленных на узнаваемость бренда и отложенных конверсий.Недостаток: не даёт полной картины, переоценивает вклад первого источника, игнорирует остальные взаимодействия (перед покупкой пользователь совершает обычно несколько взаимодействий).5. ЛинейнаяКак работает: все каналы в цепочке имеют одинаковую ценность (по 25% каждый).Подойдёт, если: 1) длительный цикл продаж, когда требуется «дожимать» клиента на всех этапах воронки продаж;2) необходимо учитывать вклад всех источников трафика в конверсиюНедостаток: нельзя точно определить, какой источник стал решающим для совершения конверсии.6. С учётом давности взаимодействия (Временной спад)Как работает: ценность распределяется между каналами по градации, чем ближе канал к конверсии, тем больше он получит ценности.Подойдёт, если нужно оценить эффективность рекламных кампаний с акционным предложением (ограниченных по времени).Недостаток: недооценивает вклад источников, которые вели пользователя к совершению конверсии.7. На основе позицииКак работает: присваивает по 40% ценности первому и последнему источникам, остальные 20% распределяет поровну между всеми остальными каналами.Подойдёт, если основная цель − привлечь новую аудиторию и сконвертировать уже имеющуюся.Недостаток: недооценивает промежуточные, между первым и последним, источники взаимодействий, которые могут сыграть решающую роль в достижении конверсии.Всё это были стандартные модели атрибуции, которые вам предлагает Google Analytics в бесплатной версии сервиса. В этих моделях применяются правила, которые задаёт система или вы сами.И во всех этих моделях есть свои достоинства и недостатки. К сожалению, идеальной нет. Главный их минус в том, что все отчёты основаны только на внутренних данных самой системы аналитики. На онлайн данных. Оффлайн же данные о выполнении ваших заказов, ROPO-эффекте (Research Online Purchase Offline, досл. «поиск онлайн – покупка оффлайн», т.е. о влиянии цифровой рекламы на оффлайн-покупки) остаются вне зоны видимости Google Analytics. Однако в платной версии сервиса доступна ещё одна модель. Номер 8 в нашем списке. И в ней нет чётко обозначенных заранее правил, а ценность рассчитывается, исходя из ваших данных и Вектора Шепли.8. На основе данных (Data‑Driven Attribution)– считается максимально объективной моделью, поскольку для оценки каналов используются собственные данные.Как работает: порядок канала в цепочке не учитывается, модель оценивает, как присутствие канала повлияло на конверсию. При изменении порядка сессий ценность канала по Вектору Шепли не изменится. Подойдёт: всем, кому важно знать какие кампании и конкретные ключи работают более эффективно, и применять эти данные для распределения рекламного бюджета. Недостаток: подойдёт не для всех кампаний, т.к. требуется достаточный объём данных, не оценивает движение по воронке, нельзя загрузить оффлайн данные CRM, чтобы увидеть информацию о транзакциях.Другие возможности Google AnalyticsВ Google Analytics есть возможность настраивать собственные (кастомные) модели либо импортировать из Analytics Solutions Gallery уже готовые и протестированные на конкретном бизнесе авторские модели атрибуции (Авинаша Кошика, Джастина Катрони и других авторов). И это − мощнейший плюс этой системы аналитики. Но прежде, чем браться за создание собственной модели советую разобраться со стандартными моделями Линейная, Первое взаимодействие, Последнее взаимодействие, Временной спад и На основе позиции. Потому как все кастомные модели строятся на именно на основе одной из этих базовых моделей атрибуции. Изучайте, пробуйте, экспериментируйте. Смотрите, как будут меняться значения и показатели работы всех каналов на пути к конверсии при разных моделях атрибуции. Оценивайте работу каналов и анализируйте уже полученные данные, используя «Инструмент сравнения моделей». В интерфейсе Analytics найти его можно так: Группа отчётов «Конверсии» → Многоканальные последовательности → Инструмент сравнения моделей атрибуцииЗдесь можно сравнить эффективности работы каналов при работающей в настоящий момент модели атрибуции и любой другой модели атрибуции, которую вы можете выбрать из выпадающего списка.Сравните статистические показатели и эффективность работы каналов при разных настройках атрибуции. Определите оптимальную для вашего бизнеса модель оценки вклада каналов в конверсию.Прямо из «Инструмента сравнения» можно перейти к настройкам собственной модели атрибуции. И сравнить её эффективность с работающей моделью или любой из базовых.Кратко резюмируем:1. Модели атрибуции позволяют оценить вклад каждого из каналов трафика на сайт в совершение конверсии (покупка, заявка, заполнение формы и пр.)2. Система Google Analytics позволяет проследить всю цепочку взаимодействий пользователя с сайтом и построить отчёты, основанные на внутренних данных системы3. Выбирайте модель атрибуции, основываясь на особенностях, целях и задачах вашего бизнеса. Пользуйтесь «Инструментом сравнения конверсий». 4. Для получения максимально полной картины эффективности digital-рекламы с учётом данных оффлайн, можно строить заточенные исключительно под ваш бизнес собственные модели атрибуции.Остались вопросы? Обращайтесь. Будем рады ответить. Объясним, расскажем, поможем разобраться и настроить.Успешных кампаний и эффективных каналов!Автор: специалист по контекстной рекламе СПб МедиаЕвгений Богомолов