Задача регрессии в машинном обучении — это тип обучения в ИИ, когда модель обучается на данных с непрерывным значением, чтобы предсказывать его на основе одного или нескольких входных параметров. Отличие регрессии от задач классификации заключается в том, что регрессия предсказывает непрерывные значения (например, цену на дом, температуру, количество продаж), в то время как классификация предсказывает категориальные метки (например, да/нет, красный/синий/зеленый).