Введение в искусственный интеллект
Искусственный интеллект — это интересная научная область, которая изучает, как научить компьютеры думать и делать то, что умеют люди.
Первоначально компьютеры были изобретены Чарльзом Бэббиджем для оперирования числами в соответствии с четко определенной процедурой - алгоритмом. Современные компьютеры, хотя и значительно более совершенные, чем оригинальная модель, предложенная в 19 веке, по-прежнему придерживаются той же идеи управляемых вычислений. Таким образом, можно запрограммировать компьютер на выполнение чего-либо, если мы знаем точную последовательность шагов, которые нам нужно выполнить для достижения цели.
✅ Определение возраста человека по его фотографии - это задача, которую нельзя явно запрограммировать, потому что мы не знаем, как у нас в голове возникает число, когда мы это делаем.
Однако есть некоторые задачи, которые мы явно не знаем, как решить. Рассмотрим возможность определения возраста человека по его фотографии. Мы каким-то образом учимся это делать, потому что видели много примеров людей разного возраста, но мы не можем объяснить, как мы это делаем, и не можем запрограммировать компьютер на это. Это именно тот вид задач, который представляет интерес для искусственного интеллекта (сокращенно ИИ).
✅ Подумайте о некоторых задачах, которые вы могли бы переложить на компьютер, которому пригодился бы искусственный интеллект. Рассмотрите области финансов, медицины и искусства - какую пользу сегодня приносит искусственный интеллект этим областям?
Слабый искусственный интеллект против Сильного искусственного интеллекта
Слабый искусственный интеллект
- Слабый искусственный интеллект относится к системам искусственного интеллекта, которые разработаны и обучены для выполнения конкретной задачи или узкого набора задач.
- Эти системы искусственного интеллекта, как правило, не являются интеллектуальными; они преуспевают в выполнении заранее определенной задачи, но им не хватает истинного понимания или сознательности.
- Примерами слабого искусственного интеллекта являются виртуальные помощники, такие как Siri или Alexa, алгоритмы рекомендаций, используемые потоковыми сервисами, и чат-боты, предназначенные для конкретных задач обслуживания клиентов.
- Слабый искусственный интеллект узкоспециализирован и не обладает когнитивными способностями, подобными человеческим, или общими возможностями решения проблем за пределами своей узкой области.
Сильный искусственный интеллект
- Сильный ИИ, или общий искусственный интеллект (AGI), относится к системам искусственного интеллекта с интеллектом и пониманием на уровне человека.
- Эти системы искусственного интеллекта обладают способностью выполнять любую интеллектуальную задачу, доступную человеку, адаптироваться к различным областям и обладать определенной формой сознания или самосознания.
- Достижение сильного искусственного интеллекта является долгосрочной целью исследований в области искусственного интеллекта и потребует разработки систем искусственного интеллекта, которые могут рассуждать, учиться, понимать и адаптироваться к широкому спектру задач и контекстов.
- Сильный искусственный интеллект в настоящее время является теоретической концепцией, и ни одна система искусственного интеллекта не достигла такого уровня общего интеллекта.
Определение интеллекта и тест Тьюринга
Одна из проблем при работе с термином Интеллект заключается в том, что нет четкого определения этого термина. Можно утверждать, что интеллект связан с абстрактным мышлением или с самосознанием, но мы не можем дать ему правильного определения.
Чтобы понять двусмысленность термина интеллект, попробуйте ответить на вопрос: "Умна ли кошка?". Разные люди, как правило, дают разные ответы на этот вопрос, поскольку не существует общепринятого теста, подтверждающего истинность утверждения. И если вы думаете, что он есть - попробуйте провести тест на IQ своей кошки...
✅ Задумайтесь на минуту о том, как вы определяете интеллект. Разумна ли ворона, которая может разгадать лабиринт и достать немного еды? Умен ли ребенок?
Если мы говорим об AGI, нам нужно как-то понять, создали ли мы по-настоящему интеллектуальную систему. Алан Тьюринг предложил способ, который называется тест Тьюринга, он помогает определить уровень интеллекта. Тест сравнивает данную систему с чем-то изначально интеллектуальным - с реальным человеком, и поскольку любое автоматическое сравнение может быть обойдено компьютерной программой, мы используем человека-запросчика. Итак, если человек не в состоянии отличить реального человека от компьютерной системы в текстовом диалоге - система считается интеллектуальной.
Чат-бот под названием Юджин Густман, разработанный в Санкт-Петербурге, в 2014 году был близок к прохождению теста Тьюринга, используя хитроумный личностный трюк. Заранее было объявлено, что это 13-летний украинский мальчик, что объясняет недостаток знаний и некоторые неточности в тексте. Бот убедил 30% судей в том, что он человек, после 5-минутного диалога - показатель, который, по мнению Тьюринга, машина сможет преодолеть к 2000 году. Однако следует понимать, что это не означает, что мы создали интеллектуальную систему или что компьютерная система обманула человека, проводящего опрос - не система обманула людей, а скорее создатели ботов!
✅ Вас когда-нибудь обманывал чат-бот, заставляя думать, что вы разговариваете с человеком? Как это вас убедило?
Различные подходы к искусственному интеллекту
Если мы хотим, чтобы компьютер вел себя как человек, нам нужно каким-то образом смоделировать внутри компьютера наш образ мышления. Следовательно, нам нужно попытаться понять, что делает человека разумным.
Чтобы иметь возможность запрограммировать интеллект в машину, нам нужно понимать, как работают наши собственные процессы принятия решений. Если вы немного займетесь самоанализом, то поймете, что некоторые процессы происходят подсознательно – например. мы можем отличить кошку от собаки, не задумываясь об этом, в то время как некоторые другие требуют рассуждений.
Существует два возможных подхода к этой проблеме:
Подход "сверху вниз" (символическое мышление)
- Нисходящий подход моделирует то, как человек рассуждает о решении проблемы. Он включает в себя извлечение знаний от человека и представление их в машиночитаемой форме. Нам также необходимо разработать способ моделирования рассуждений внутри компьютера.
Подход "снизу вверх" (нейронные сети)
- Подход "снизу вверх" моделирует структуру человеческого мозга, состоящую из огромного количества простых единиц, называемых нейронами. Каждый нейрон действует как средневзвешенное значение своих входных данных, и мы можем обучить сеть нейронов решать полезные задачи, предоставляя обучающие данные.
Существуют также некоторые другие возможные подходы к интеллекту:
- Эмерджентный, синергетический или мультиагентный подход основан на том факте, что сложное интеллектуальное поведение может быть получено в результате взаимодействия большого количества простых агентов. Согласно эволюционной кибернетике, интеллект может возникнуть из более простого, реактивного поведения в процессе метасистемного перехода.
- Эволюционный подход, или генетический алгоритм - это процесс оптимизации, основанный на принципах эволюции.
Сосредоточимся на двух основных направлениях: сверху вниз и снизу вверх.
Подход "сверху вниз"
В нисходящем подходе мы пытаемся моделировать наши рассуждения. Поскольку мы можем следовать своим мыслям, когда рассуждаем, мы можем попытаться формализовать этот процесс и запрограммировать его внутри компьютера. Это называется символическим рассуждением.
У людей, как правило, в голове есть какие-то правила, которыми они руководствуются в процессе принятия решений. Например, когда врач ставит диагноз пациенту, он или она может понять, что у человека высокая температура, и, следовательно, в организме может происходить какое-то воспаление. Применяя большой набор правил к конкретной проблеме, врач может поставить окончательный диагноз.
Этот подход в значительной степени опирается на представление знаний и рассуждения. Получение знаний от эксперта-человека может быть самой сложной частью, потому что врач во многих случаях не будет точно знать, почему он или она ставит тот или иной диагноз. Иногда решение просто приходит в голову без четкого обдумывания. Некоторые задачи, такие как определение возраста человека по фотографии, вообще нельзя свести к манипулированию знаниями.
Подход "снизу вверх"
В качестве альтернативы мы можем попробовать смоделировать простейшие элементы внутри нашего мозга – нейрон. Мы можем сконструировать так называемую искусственную нейронную сеть внутри компьютера, а затем попытаться научить ее решать задачи, приводя примеры. Этот процесс аналогичен тому, как новорожденный ребенок узнает о своем окружении, проводя наблюдения.
✅ Проведите небольшое исследование о том, как учатся младенцы. Каковы основные элементы мозга ребенка?
А как насчет ML?
Часть искусственного интеллекта, основанная на компьютерном обучении для решения задачи на основе некоторых данных, называется машинным обучением.
Краткая история искусственного интеллекта
Искусственный интеллект зародился как отрасль в середине двадцатого века. Первоначально символическое мышление было распространенным подходом, и это привело к ряду важных успехов, таких как экспертные системы – компьютерные программы, которые могли действовать как эксперты в некоторых ограниченных проблемных областях. Однако вскоре стало ясно, что такой подход плохо масштабируется. Извлечение знаний у эксперта, представление их в компьютере и поддержание точности этой базы знаний оказывается очень сложной задачей и во многих случаях слишком дорогостоящей, чтобы быть практичной. Это привело к так называемой Зиме искусственного интеллекта в 1970-х годах.
С течением времени вычислительные ресурсы становились дешевле, а данных становилось доступно больше, поэтому нейросетевые подходы начали демонстрировать большие результаты в конкуренции с людьми во многих областях, таких как компьютерное зрение или понимание речи. В последнее десятилетие термин "Искусственный интеллект" в основном использовался как синоним нейронных сетей, потому что большинство успехов в области ИИ, о которых мы слышим, основаны на них.
Мы можем наблюдать, как изменились подходы, например, при создании компьютерной программы для игры в шахматы:
- Ранние шахматные программы были основаны на поиске – программа явно пыталась оценить возможные ходы противника для заданного количества следующих ходов и выбирала оптимальный ход на основе оптимальной позиции, которая может быть достигнута за несколько ходов. Это привело к разработке так называемого алгоритма поиска альфа-бета-обрезки.
- Стратегии поиска хорошо работают ближе к концу игры, когда пространство поиска ограничено небольшим количеством возможных ходов. Однако в начале игры пространство для поиска огромно, и алгоритм можно улучшить, изучив существующие матчи между игроками-людьми. В последующих экспериментах использовалось так называемое рассуждение на основе конкретных случаев, когда программа искала случаи в базе знаний, очень похожие на текущую позицию в игре.
- Современные программы, которые побеждают игроков-людей, основаны на нейронных сетях и обучении с подкреплением, где программы учатся играть исключительно путем длительной игры против самих себя и обучения на собственных ошибках – очень похоже на то, как люди учатся играть в шахматы. Однако компьютерная программа может сыграть гораздо больше игр за гораздо меньшее время и, следовательно, обучаться намного быстрее.
✅ Проведите небольшое исследование других игр, в которые играл искусственный интеллект.
Аналогичным образом, мы можем видеть, как изменился подход к созданию “говорящих программ” (которые могли бы пройти тест Тьюринга):
- Ранние программы такого рода, такие как Eliza, были основаны на очень простых грамматических правилах и переформулировании входного предложения в вопрос.
- Современные помощники, такие как Cortana, Siri или Google Assistant, представляют собой гибридные системы, которые используют нейронные сети для преобразования речи в текст и распознавания наших намерений, а затем используют некоторые рассуждения или явные алгоритмы для выполнения требуемых действий.
- В будущем мы можем ожидать, что полноценная модель на основе нейронов будет управлять диалогом сама по себе. Недавние семейства нейронных сетей GPT и Turing-NLG демонстрируют большой успех в этом.
Последние исследования в области искусственного интеллекта
Огромный рост исследований в области нейронных сетей в последнее время начался примерно в 2010 году, когда стали доступны большие общедоступные наборы данных. Огромная коллекция изображений под названием ImageNet, которая содержит около 14 миллионов аннотированных изображений, породила ImageNet Large Scale Visual Recognition Challenge.
В 2012 году сверточные нейронные сети впервые были использованы при классификации изображений, что привело к значительному снижению ошибок классификации (почти с 30% до 16,4%). В 2015 году архитектура ResNet от Microsoft Research достигла точности на уровне человека.
С тех пор нейронные сети продемонстрировали очень успешное поведение во многих задачах:
За последние несколько лет мы стали свидетелями огромных успехов с большими языковыми моделями, такими как BERT и GPT-3. Это произошло в основном из-за того, что доступно много общих текстовых данных, которые позволяют нам обучать модели улавливать структуру и значение текстов, предварительно обучать их на общих текстовых коллекциях, а затем специализировать эти модели для более конкретных задач.
Поддержите публикацию, просто поставив ей 💗
Создаём передовых ИИ-ботов и внедряем CRM для вашего бизнеса
Мы разрабатываем умных чат-ботов и голосовых ассистентов, которые автоматизируют продажи, поддержку и маркетинг. Настраиваем CRM, чтобы ваш бизнес работал эффективно.
Что мы предлагаем?
✅ Чат-боты с ИИ – обучаем и адаптируем под ваш бизнес
✅ Голосовые помощники – распознавание речи и генерация естественного голоса
✅ Интеграция моделей генерации изображений (Stable Diffusion, DALL·E, Midjourney)
✅ Автоматизация бизнеса через CRM – внедрение и настройка под ваши задачи
✅ Боты на Python с открытыми API – гибкая интеграция с сервисами
✅ Парсеры и сборщики данных – автоматизация аналитики и мониторинга
✅ Custom нейронные сети – решения под индивидуальные запросы
🔹 Бесплатная демонстрация: умные голосовые роботы и чат-боты
Консультация по внедрению CRM, чат-ботов и голосовых роботов – бесплатно!
💬 Пишите мне лично:
🔹 WhatsApp: сюда
🔹 Telegram: @odintsov
📩 Подпишитесь на полезные инсайты по продажам, ИИ и автоматизации:
🎁 Дарю книгу “8 активаторов продаж” !
❤ Поддержите публикацию — ставьте лайк!
📋 Мои ТОПовые публикации:
- Чат-бот GPT Телеграм с Midjourney, GPT-4 и DALLE
- Голосовой робот. Полное руководство
- Что такое голосовой бот с искусственным интеллектом
- Для чего нужны чат-боты бизнесу?
- Влияние ChatGPT на маркетинг: 20 экспертов рассказали, чего ожидать
- Отличие ChatGPT от OpenAI и GPT3
- Что такое продажи в мессенджерах?
- Как продавать в мессенджерах. Руководство для B2B-бизнеса
- Продажи через мессенджеры: Мощная стратегия для эффективного привлечения клиентов
- Чат-бот для бизнеса. Полное руководство
- Как продавать в мессенджерах. Руководство для B2B-бизнеса
- Кейс. Автообзвон голосовым роботом. Робот разговаривает как человек
- Что такое голосовые боты и как они помогут вашему бизнесу
- Как менеджеру по продажам найти клиентов | Поиск базы для холодных звонков
Держите мой гайд по продажам в мессенджерах https://tvoerazvitie.com/guide
самый тщательный и подробный разбор, что я читал
Спасибо🙏