Проверяем Jobs to Be Done без разговоров с клиентами

Сергей Борисюк, CTO и сооснователь PandaDoc, рассказал на конференции ProductSense, как сформулировать JTBD и Value Proposition, если нет времени на разговоры с клиентом, но есть человек, который знает Python.

Сергей Борисюк на конференции ProductSense​
Сергей Борисюк на конференции ProductSense​

PandaDoc помогает компаниям настроить документооборот так, чтобы они работали эффективнее. Сейчас наш софт используют 15 тысяч компаний по всему миру, в основном это англоговорящие компании.

Для понимания масштаба: каждые семь секунд наши клиенты отправляют документ, то есть пока вы открывали статью и читали лид — несколько документов ушло на подпись. В 2018 году клиенты закрыли сделки на $3,5 млрд, а недавно мы запустили платежи и через нас прошло уже более $100 млн.

Как определить Jobs to Be Done

В зону моей ответственности входит продуктовая стратегия, и во время работы над ней мы сформулировали brand promise — “look professional and close more deals faster” — то, что мы обещаем клиентам

Мы это сформулировали, но потом пришло осознание, что такой brand promise не охватывает все возможные варианты использования продукта. У нас есть разные услуги: hr, платежи и просто подписание документов. И хотя PandaDoc — компания с большим оборотом, которая уже нашла свой Product/Market Fit, мы поняли, что нужно срочно сформулировать свои Jobs to Be Done и Value Proposition.

Это может показаться странным, но определение JTBD и формулирование VP — это бесконечный процесс, потому что добавляются новые сегменты, меняется продукт и сценарий использования. В общем, нужно эти артефакты постоянно полировать и корректировать.

Я задумался, как провалидировать brand promise сейчас и делать это регулярно потом, при условии, что времени у нас немного. Можно, конечно, просто сделать кучу звонков клиентам и спросить, почему они используют PandaDoc, какую пользу мы им приносим и какую проблему решаем, но я придумал кое-что другое.

Шаг 1: получить все отзывы сразу

G2Crowd и Capterra — это сайты, где постят отзывы на всякий софт для b2b. На момент сбора у нас было 365 отзывов на G2Crowd, 657 — на Capterra. Все отзывы хорошо структурированы, так как сайты задают конкретные вопросы про плюсы, минусы, общее впечатление, пользу для бизнеса и так далее.

Мне нужно было собрать эти ревью. Я написал скрипт, который парсит отзывы на сайте и складывает в файлы. На моем столе оказались более 1000 ревью с G2Crowd и Capterra в структурированном формате.

Шаг 2: понять суть

Далее нужно понять, о чем говорят клиенты, и самый простой способ — сделать «облако» слов. Взять все плюсы из отзывов с сайтов, объединить их, сделать «облако», вычистить ненужные слова — и вот у вас есть картинка, которая дает понимание, о чем говорят клиенты.

​Клиенты PandaDoc упоминают “easy”, “template”, “proposal”, отдельные фичи и так далее
​Клиенты PandaDoc упоминают “easy”, “template”, “proposal”, отдельные фичи и так далее

Это хороший способ составить общую картину, но тут нет контекста. Потому что можно говорить как «easy to», так и «not easy». Нужно копать дальше.

Шаг 3: прояснить контекст

Моя цель — провалидировать, для решения каких проблем клиенты «нанимают» наш продукт. Какой пользу мы приносим?

Люди оставляли ревью в специфичном формате, поэтому стандартная структура JTBD нам не очень подходила:

Проверяем Jobs to Be Done без разговоров с клиентами

Выход был в том, чтобы сделать функциональную JTBD:

Проверяем Jobs to Be Done без разговоров с клиентами

Тут есть действие, объект и контекст. Контекст нам не очень интересен, нужно определиться с объектами и глаголами действия.

Объекты “Proposal”, “Quote”, “Contract”, “Agreement”, “Document” — это документы, с которыми пользователи работают в PandaDoc. Чтобы понять, что пользователи с ними делают, я использовал текстовый анализ — concordance. Это помогло «центрировать» отдельные слова в текстовом массиве и посмотреть контекст вокруг них.

<p>Что клиенты PandaDoc делают с коммерческими предложениями</p>

Что клиенты PandaDoc делают с коммерческими предложениями

Теперь у меня есть объекты и действия с ними — можно читать. Я начал смотреть, что клиенты делают с объектами и какие глаголы они используют. Например, четыре основных действия производят над коммерческими предложениями — оптимизируют, создают, отправляют и отслеживают их судьбу. “Document” и “contract”, в основном создают, отправляют, подписывают и отслеживают.

Если склеить все глаголы и объекты, выходит:

  • “Create and send proposals”.
  • “Create, send and sign contracts”.
  • “Create, send and sign documents”.

Бонусным шел “track”, под которым клиенты понимали две вещи: где и в каком состоянии находится их документ (отправлен, не отправлен, его приняли и так далее). Они понимали, просмотрел его клиент или нет с помощью нашей дополнительной аналитики — это было wow-фактором, который нам нужно было подчеркнуть.

В облаке слов было несколько терминов, которыми мы объясняли людям, что мы делаем — «процессы», «воркфлоу» и так далее. Мне показалось интересным их тоже прогнать через concordance-анализ и посмотреть, что говорят клиенты. Оказалось, что process используют очень часто и слово упоминается в контексте “speedup” — ускорения, “streamline” — улучшения, “simplifies” — упрощения. Еще в тестах было “improve”, “automate”, “accelerate”, но они все сводились к улучшению процесса.

Итак, процессы упрощают не развлечения ради, а для чего-то — ради какой-то цели. Эту цель мне нужно было найти. Я еще раз посмотрел на words cloud, выделил и проанализировал “easy”, “time”, “easily”. Клиенты говорили о нескольких категориях со словом “easy” — это “easy to views”, “easy to create”, “easy to get signatures”, “easy to build”. “Time” использовали в одном контексте: «срезали», «сохраняли», «уменьшали», «обрезали» и прочее.

Шаг 4: сформулировать ценность для клиентов

Итак, из простой функциональной JBTD “Create, send, track and sign Proposals and Contracts” мне нужно было перейти к ценности для клиента. Я начал читать комментарии дальше, чтоб как-то связать то, что клиенты делают (смотри выше) и что они при этом получают.

У меня получились достаточно интересные выводы. “Create, send, track and sign” для клиентов и был “process”. Когда они улучшали этот процесс, они упрощали и ускоряли его и тем самым экономили время.

“Create, send, track and sign” → “process”, а с PandaDoc у клиентов получается “streamlined process”.

Под “Proposals and Contracts” клиенты понимали Sales Documents. Вместо “Create, send, track and sign” я подставил “Streamlined Process”, а вместо “Proposals and Contracts” — “Sales Documents”. Получилось “Streamlined Process for Sales Documents”.

Вспомним, что мы начинали с двух brand promise: “look professional” и “close deals faster”. Мы работаем с небольшими клиентами: когда они используют PandaDoc, они выглядят более профессионально. Это то, о чем они сами пишут в отзывах.

Второй brand promise — “close deals faster” — трансформировался в два:

  • “Create docs faster”.
  • “Streamline process”.

Именно так говорили об этом клиенты, и это правильнее передает их посыл.

Благодаря этому исследованию мы переформулировали объяснение пользы от PandaDoc:

Проверяем Jobs to Be Done без разговоров с клиентами

Как это сделать без Python

Немногие из вас захотят возиться с Python, поэтому вы можете пойти другими путями. Например, купить знакомому разработчику пива и предложить решить эту задачу. Но можно обойтись и без разработчика, и без Python.

Шаг 1. Сбор данных. Установите расширение Chrome Data Miner. Затем настройте колонки в интерфейсе, чтобы вытащить определенные данные с нужного сайта. Все данные приложение сохранит в структурированном формате.

Шаги 2–3. «Облако» слов и контекст. Программа Voyant-tools сделает облако, в котором вы увидите все слова, которые спарсили. Также она покажет график, который похож на ягодку — когда вы наведете курсор на слово, подсветятся другие слова, с которыми это слово употреблялось. Тут же есть и concordance-анализ, который находит слово или термин и показывает контекст. С помощью этих простых действий вы можете понять, что о вашем продукте думают клиенты и зачем они его используют.

Проверяем Jobs to Be Done без разговоров с клиентами

Этот способ также подойдет, чтобы проанализировать, почему клиенты вас не любят. Например, когда мы увидели “easy to use, but it’s hard to set up”, стало понятно, что нужно что-то делать с онбордингом.

Нет ничего лучше, чем говорить о продукте словами клиентов: мы начали использовать этот анализ для того, чтобы формировать наши маркетинговые питчи — заголовки на сайтах, например. Если клиенты говорят о “streamline process” и хотят сделать четыре основных действия, им стоит об этом рассказать. Конечно, вам понадобится провести A/B-тесты.

Вы можете собрать информацию о своих конкурентах: что о них говорят клиенты, что в них не нравится. Ее можно использовать, например, для отстройки. Сам анализ занимает несколько минут, но приносит много пользы продукту.

Выводы

  • Чтобы подтвердить гипотезу, не обязательно проводить интервью с 1000 пользователями — достаточно спарсить и аккуратно обработать 1000 отзывов.
  • Чтобы спарсить и обработать 1000 отзывов не обязательно знать Python, достаточно установить одно расширение в Chrome и скачать одну программу.
  • Парсить можно не только преимущества, но и недостатки — не только о своей компании, но и о конкурентах.

Конференция ProductSense по менеджменту продуктов — один из проектов команды ProductSense. Мы делаем расшифровки докладов с наших конференций и пишем по ним статьи.

Благодарим за подготовку статьи редактора Асю Челован.

40
9 комментариев