Биометрия по лицу: мировая история развития, сферы применения и способ оплаты
В XXI веке биометрическая аутентификация, когда для удостоверения личности людей используются их физические характеристики (нап��имер, отпечатки пальцев, сетчатка глаза, лицо), становится неотъемлемой частью повседневной жизни. На фоне запуска Единой Биометрической Системы (ЕБС) разложим все по полочкам. Поговорим об эволюции функции распознавания лица, актуальных сферах применения и об удобном способе оплаты.
А началось все еще до первого полета человека в космос
В 1955 году появляется машинное зрение – научное направление в области искусственного интеллекта и связанные с ним технологии получения изображений объектов реального мира, их обработки и использования. А готовые данные должны использоваться для решения разного рода прикладных задач без участия (полного или частичного) человека.
В 1960-ые годы появляются первые эксперименты в области машинного распознавания лица и первые системы обработки 2D-изображений. Актуальные задачи того времени – спутниковая фотосъёмка, медицинская визуализация, распознавание символов и улучшение фотографий и др.
В этот период Вуди Бледсо, профессор Техасского университета в Остине, создал систему, которая могла вручную получать фотографию лица. Вот как это было:
· на планшете RAND размечали лицо, забивая координаты областей лица: глаза, нос, рот и линия волос – до 46 точек;
· специальный алгоритм крутил/вертел/зумировал полученное изображение – до 22 измерений;
· записанные вручную метрики впоследствии сохранялись в базе данных;
· при введении в систему новой фотографии человека можно получить наиболее похожее изображение через базу данных.
С распознаванием лица такая система справлялась в 100 раз быстрее, чем человек.
В 1970-ые годы с ростом доступности компьютерного оборудования развивается концепция машинного построения трёхмерных образов объектов. Позже появляется возможность обрабатывать изображения в реальном времени для некоторых задач, таких как преобразование телевизионных стандартов.
Тогда же исследователи Хармон, Голдштейн и Леск сделали ручную систему распознавания лица Бледсо более точной, используя 21 маркер лица, включая толщину губ и цвет волос.
В 1988 году Майкл Кирби и Лоуренс Сирович из Университета Брауна применили подход Eigenface с использованием линейной алгебры для анализа изображений. Для разметки лиц они применяли менее 100 различных значений, доказав, что этого достаточно для точного кодирования изображения лица.
В 1991 году Алекс Пентланд и Мэтью Терк из Массачусетского технологического института усовершенствовали технологию Eigenfaces, задействуя факторы окружающей среды. Им удалось автоматизировать процесс распознавания.
В период 1993-2000х годов Управление перспективных исследовательских проектов при Минобороне США (DAPRA) и Национальный институт стандартов и технологий (NIST) выпустили программу FERET с самой обширной базой лиц — более 14 тыс. изображений. Изначально ее использовали, чтобы находить преступников по всему миру. Затем представили в открытом доступе для стимулирования коммерческого рынка распознавания лиц.
Продолжение в XXI веке: роль США, Китая и России
С 2010 года Facebook начал использовать функцию распознавания лиц, чтобы находить пользователей на публикуемых фото и предлагать их отметить. Это обновление создало шумиху в СМИ, однако не повлияло на имидж и популярность самой социальной сети.
А в 2014 году FB запускает сервис DeepFace для распознавания лиц в толпе с точностью 97,25%, что почти соответствует способностям среднего человека (97,53 %). Такого результата удалось достичь благодаря способу построения 3D-модели лица по фотографии.
В 2011 году власти Панамы и США запустили совместный проект FaceFirst. Это технология распознавания лиц, которую изначально использовали для пресечения незаконной деятельности в аэропорту Токумен в Панаме. А впоследствии она стала крупнейшей биометрической установкой в аэропорту. В том же году полиция и спецслужбы США начали применять распознавание лиц для опознания трупов, что, в частности, помогло утвердить личность Усамы бен Ладена.
В 2015 году Google представила свою разработку — FaceNet, достигшая рекордной точности в 99,63% благодаря огромному массиву данных, которые собирают сервисы Google. Технологию, в частности, используют в Google Фото для сортировки изображений и автоматических отметок людей на них.
В 2016 году американский ритейлер Amazon, сегодня владеющий сетью магазинов без продавцов и кассиров, начал тестировать систему Just Walk Out. Она включает в себя
· потолочные камеры, считывающие все перемещения покупателей;
· датчики, устанавливаемые на полках, которые измеряют вес продуктов;
· облачную инфраструктуру Amazon Web Services для обработки данных.
Интересно, что разработчики Amazon утверждают, что приватность не нарушена, так как нет никакого распознавания лица, а используются другие визуальные сигналы: походка, длина конечностей и т.д.
Пользоваться системой легко: покупателю нужно скачать приложение Amazon Go, прикрепить к нему банковскую карту и получить QR-код для входа.
В марте 2020 года Amazon объявил о продаже Just Walk Out другим торговым сетям.
Также в 2018 году Amazon активно продвигает свой облачный сервис для распознавания лиц и объектов – Rekognition, которым пользуются правоохранительные органы США. Система умеет распознавать до 100 человек на одном фото и искать их в базах данных, содержащих десятки миллионов лиц.
2 августа 2016 года на конференции в Нью-Йорке Samsung представила новый смартфон Galaxy Note 7 со сканером радужной оболочки глаза, чтобы повысить уровень безопасности доступа к устройству. В самой компании это аргументировали тем, что в отличие от отпечатков пальцев радужную оболочку нельзя дублировать, поскольку она имеет уникальный рисунок.
Тогда же платежные системы MasterCard, Visa и другие финансовые организации начинают включать биометрическую аутентификацию платежей.
В марте 2017 году китайская компания Baidu запускает платформу Face++ для распознавания лица, которая обещала находить совпадения на фотографиях с вероятностью в 99,77%. На сегодняшний день сервис получил широкое распространение в Китае. Любопытно, что в отличие от США граждане КНР относятся к технологиям распознавания лица с меньшим недоверием. Можно сказать, они воспринимают это как данность и неотъемлемый элемент повседневной жизни, смирившись с отсутствием частной жизни в своей стране.
12 сентября 2017 года компания Apple представила технологию Face ID, заменив дактилоскопический датчик «Touch ID». Всего лишь один взгляд на смартфон и личность подтверждена – iPhone разблокирован, покупка оплачена. Лицо сканируется и сравнивается с ранее записанной структурной картой лица владельца.
Секрет успеха – в объединении передовых программных и аппаратных разработок Apple. Вот, что внутри и как это работает:
· Проектор точек. Проецирует на лицо пользователя более 30 000 невидимых инфракрасных точек, по которым потом создается его математическая модель.
· Инфракрасная камера. Считывает точечную структуру лица, создает изображение в инфракрасном спектре и помещает эти данные в специальный модуль процессора.
· Инфракрасный излучатель. Пускает невидимый пучок инфракрасного света на лицо, что позволяет выполнить его точное сканирование даже в полной темноте.
Face ID считается самой совершенной на сегодняшний момент технологией распознавания лица. Кроме того, она еще и самообучаемая – запоминает изменения в лице с помощью нейронных сетей в процессоре смартфона.
26 сентября 2018 года на конференции глобальных финансовых технологий Finovate Fall в Нью-Йорке Ак Барс Банк представил технологию оплаты товаров и услуг при помощи лица – Face2Pay.
Основное назначение – совершение покупки или прохода через барьерную область без смартфона, банковской карты и иных традиционных платежных инструментов. Как только пользователь приближается к зоне покупки или контроля, система узнает его по лицу и спишет с карты определенную сумму в рамках лимита или обеспечит свободный проход.
Главное отличие технологии Face2Pay от схожих в том, что она уже интегрирована в платежную инфраструктуру банка.
Подведем итог: технически биометрические системы распознавания лиц работают по принципу построения и сравнения математических моделей лица. Там, где мы видим цельный образ, система видит набор данных и уникальный для каждого человека цифровой отпечаток. Анализируя и сравнивая эти данные, можно с высокой вероятностью идентифицировать и верифицировать личность.
Мировая карта применения технологии распознавания лиц
Британская компания Surfshark составила карту использования технологии распознавания лиц на государственном уровне в 194 странах мира.
Странам был присвоен 1 из 5 статусов в зависимости от того, как они приняли технологию: в использовании, одобрена для использования (не внедрена), рассматривается, нет данных об использования, запрещена.
В общей сложности сегодня насчитывается 109 стран, которые либо используют, либо одобрили использование технологии распознавания лиц для целей наблюдения. В большинстве таких стран есть национальные базы данных и локальные алгоритмы.
Любопытно, что Бельгия является единственной страной, где публичное использование этой технологии объявлено незаконным. А многие национальные правительства и их граждане находятся в разгаре глобальных дебатов по поводу этики и законности массовой слежки.
Сферы применения сегодня: кому и зачем это нужно
Если обобщить весь мировой опыт, то можно выделить следующие наиболее распространенные сферы применения технологии распознавания лиц.
1. Обеспечение национальной безопасности:
· распознавание лиц людей и их действий, объектов окружающей среды;
· поиск преступников и нелегальных иммигрантов;
· обнаружение сцен убийства;
· фильтрация неподобающего контента.
2. Помощь службе безопасности и HR-отделу
· контроль доступа в здание;
· биометрический учет рабочего времени: система фотографирует сотрудника, распознает его и автоматически делает запись в табеле о начале и окончании рабочего дня;
· мониторинг активности и вовлеченности сотрудника в течение рабочего дня, что позволяет, например, разгрузить сильных менеджеров от рутины или избавиться от слабых.
3. Оптимизация работы банков, кредитных и страховых компаний
· хранение достоверных данных о клиентах и верификация их личности при проверке и совершении операций;
· повышение лояльности клиентов, так как не нужно посещать офис и ожидать ручной проверки;
· выявление мошенников;
· внедрение биометрических банкоматов, в которых можно снять наличные деньги без карты и без PIN-кода.
4. Удобная логистика:
· упрощение процедуры проверки документов водителей и контроля при перевозке специальных грузов (рецептурные лекарства, дорогое оборудование);
· исключение третьих лиц из процесса перевозки;
· контроль доступа на склады;
· мониторинг состояния водителя: насколько он сосредоточен, не уснул ли за рулем.
5. Персонализация клиентского опыта и повышение лояльности целевой аудитории (ЦА):
· определение точечного портрета ЦА: пол, возраст, этническая принадлежность;
· аналитика посещений: подсчет уникальных посетителей, распознавание постоянных клиентов, отслеживание маршрута посетителя;
· автоматические предложения индивидуальных программ лояльности и разработка более прицельных маркетинговых кампаний;
· внедрение интерактивной рекламы, когда специальные рекламные щиты или мониторы оснащены датчиками и камерами. Далее обеспечивается взаимодействие с людьми с отслеживанием их ответной реакции и оценкой эффективности рекламы в реальном времени.
6. Инновации в ретейле и общепите:
· идентификация клиента и предотвращение мошенничества во время покупки в магазине;
· анализ поведения покупател��й и оптимизация сервисов так, чтобы продавать больше;
· удобная оплата по лицу без использования банковской карты, смартфона и других платежных устройств.
Российский путь и запуск биометрической оплаты по лицу
На мировой арене Россия достигла внушительного прогресса в области распознавания лиц. Алгоритмы от отечественных разработчиков считаются одними из самых точных в мире, по данным Национального института стандартов и технологий в США, NIST. Примером является приложение FindFace с точностью 99% от компании NTechLab.
Давайте посмотрим, какой такой путь уже пройден.
2017 год: Банк России и Ростелеком создают Единую Биометрическую Систему (ЕБС) для сбора у населения двух параметров – голоса и лица – и распознавания личности впоследствии. Роль Ростелеком – разработчик и оператор ЕБС как одного из ключевых элементов механизмов удаленной идентификации.
Драйвером для создания ЕБС стала национальная программа «Цифровая экономика Российской Федерации». В задачи программы в том числе входит повышение доступности безопасных цифровых сервисов для граждан в отдаленных регионах и маломобильного населения.
2018 – 2019 год: подключение к ЕБС банков и коммерческих организаций, уполномоченных собирать биометрическую информацию и предоставлять дистанционные услуги с использованием удалённой идентификации.
30 июня 2018 года: ЕБС начинает работать в России. Финансовая отрасль стала первым сектором экономики, где применяться система. Удалось полностью цифровизировать взаимодействие с пользователями – физическими лицами, перевести в онлайн операции по открытию счета, вклада и получению кредита.
С 2018 года Ак Барс Банк развивает собственную экосистему сервисов для бизнеса на основе компьютерного зрения – Face2. В портфеле продуктов есть платежная система на базе распознавания лица Face2Pay, первое внедрение которой состоялось в Бассейне Мирас в Альметевске. В кейсе присутствует валидация по лицу (не надо носить с собой карточку абонемента) и реализация внутренних платежей по лицу (пополнение бюджета, оплата на кассах, включая магазины на территории бассейна).
Апрель 2019 года: VISA представила технологию оплаты с помощью биометрии – SWIP. Продавцу нужно пройти двухфакторную аутентификацию: зарегистрировать ЮЛ в SWIP и у эквайера. А пользователю – зарегистрироваться в приложении, привязав свою банковскую карту, и на кассе уже только предъявить свое лицо.
Октябрь 2019 года: Ростелеком и Банк Русский Стандарт продемонстрировали проведение пилотного биометрического платежа при помощи данных в ЕБС на Форуме инновационных технологий Finopolis.
2020 год: тестирование банкоматов с функцией распознавания лица.
Февраль 2020 года: Ростелеком и Банк Русский Стандарт запустили оплату по биометрии в кофейнях CoffeeBean.
1 января 2021 года: вступает в силу Федеральный закон об использовании ЕБС для удаленной идентификации при получении финансовых и государственных услуг.
Таким образом на данный момент работа ЕБС регулируется 3 законами:
ЕБС собирает и обрабатывает фотографии, голоса и привязанные к ним паспортные данные, что является персональными данными.
В статье 14.1 описано, что такое государственная информационная система по сбору биометрии.
Март 2021 года: Сбербанк и Перекресток внедряют оплату по лицу на кассах самообслуживания.
Март 2021 года: торговая сеть «Пятёрочка» пилотирует технологию оплаты по лицу – с помощью SELFIE2PAY в партнёрстве с ранее отмеченной компанией SWIP. Как описывали выше, покупателю нужно скачать специальное приложение и зарегистрироваться в нем.
Март 2021 года Минцифра подводит промежуточный итог сбора биометрических данных населения и констатирует факт, что процесс идет медленно.
Сейчас в ЕБС – данные свыше 164 тыс. человек, а через 2 года планируется увеличить до 70 млн. Также сбором биометрии смогут заниматься и МФЦ в дополнение к банкам, а граждане смогут делать это самостоятельно и удаленно через специальное приложение. Для ускорения процесса наполняемости базы ЕБС Минцифра может прийти к административным мерам, в том числе закрыть удаленный доступ к ряду госуслуг в случае отсутствия биометрических данных пользователя.
Практические знания для оплаты по лицу
Несмотря на медленное заполнение ЕБС технология распознавания лица уверенно движется к запуску в массы.
Уже сейчас покупатель-новатор может сдать биометрию, не дожидаясь административных мер от нашего Правительства. Вот, что нужно:
· прийти в офис банка, подтвердить свою личность, предъявив паспорт, пройти идентификацию в ЕСИА: сдать образцы биометрии (фото + голос) в отделении банка (232 банка на текущий момент);
· привязать образцы биометрии к данным пользователя в Единую систему идентификации и аутентификации (ЕСИА) и ЕБС;
· привязать свой счет к сданной биометрии.
Продавцу нужно обеспечить возможность оплаты, то есть наличие биометрического оборудования с камерой для считывания лица.
И вот тогда есть все условия для настоящего волшебства – проведение биометрического платежа:
· терминал делает фото покупателя;
· встроенные алгоритмы на основе машинного обучения и специальное оборудование проверяют, что платит живой человек;
· фото отправляется в ЕБС;
· ЕБС проверяет фото и наличие средств на счету;
· одобрение оплаты и списание денег со счета покупателя.
Преимущества для покупателя: не нужны ни наличные, ни банковская карта, ни даже смартфон — достаточно «предъявить» свое лицо, и платеж состоится.
Преимущества для торговой точки: рост среднего чека, трафика в торговой точке и удовлетворенности покупателей.
Что об этом говорят старожилы платежного рынка?
«Использование биометрии может улучшить клиентский опыт как в части дистанционного оказания услуг, так и в проведении платежей. Здесь перспективу представляет развитие сферы самообслуживания и таких направлений деятельности, где использование привычных нам способов оплаты является затруднительным и неудобным – например, аквапарки, спа-центры и т.п.
Несмотря на эволюцию биометрии в различных её проявлениях, как платежная технология она еще молодая. Чтобы завоевать место под солнцем, ей предстоит пройти свой путь с учетом регуляторных и правовых аспектов, обеспечения безопасности совершаемых таким способом трансакций. Так, недавний пример мошеннической схемы оплаты в Китае показывает, что требования к качеству собираемой биометрии, используемым алгоритмам для ее обработки и инструментам регулирования всего процесса ещё нуждаются в доработке и ужесточении. Он потребует непрерывного совершенствования, так как по мере развития любых технологий, которые дают нам удобство и дополнительные возможности, растет мастерство злоумышленников, выискивающих лазейки для своих корыстных интересов.
На помощь в том числе приходят не только умные алгоритмы и программные решения на базе машинного обучения и компьютерного зрения, но и аппаратные средства, усиливающие их потенциал. Например, биометрические терминалы, оснащенные не одной, а целым рядом камер, включая инфракрасные. Их использование для распознавания лиц позволяет поднять безопасность на совершенно новый уровень».
А я еще и эмоции определять умею…
Одним из топовых технологических трендов на сегодня является распознавание эмоций. Акцент делается на глубокое понимание эмоциональной реакции человека на происходящее и более непринужденное взаимодействие между машинами и людьми.
Например, чтобы улучшить взаимодействие с клиентами и сотрудниками, работая онлайн, или анализировать, как пользователи реагируют на контент. В России подобными разработками занимается компания Neurodata Lab.
Новые креативные способы применения распознавания лиц в тандеме с технологиями эмоционального искусственного интеллекта, наверняка, еще не раз нас всех удивят, и притом очень скоро.